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1 Introduction

Monte Carlo methods are a powerful tool to solve problems numerically which are di�cult to be handled
analytically. Nevertheless, these methods are applied to one of the best studied models in statistical
physics in the following: The Ising model, which was invented by Wilhelm Lenz and investigated by his
student Ernst Ising in the 1920ies. In particular, the two-dimensional case with interactions between
next neighbours only is considered. Setting the coupling constant to 1, the Hamiltonian used here reads

H = −
∑
〈ij〉

σiσj

where 〈ij〉 denotes all neighbouring pairs and σi ∈ {1,−1} characterizes the spins on the lattice. This
model exhibts a second order phase transition, and Onsager found an exact solution in 1944.

In this report, implementations of the Ising model by means of two di�erent algorithms are discussed.
First, the single-spin �ip Metropolis algorithm is used to investigate thermalization processes and auto-
correlation times as well as for making a �rst measurement of the magnetization and susceptibility in
the critical region. Next, measurements at di�erent lattice sizes are performed by means of the Wol�
algorithm. Using these results, values for the critical temperature TC and the critical exponents γ, ν are
determined which can be compared to the known theoretical values. The implementation was done in C
under Scienti�c Linux and Originlab OriginPro was used for evaluating and plotting the data.

A necessary condition for a Monte Carlo algorithm based on a Markov process is ergodicity, which
means that the time average is equal to the average over multiple systems. Equivalently, any state of the
system can be reached from any other state. This turns out to be obvious for both algorithms, except
for the very special case T = 0 we are not interested in. To ensure that the algorithm works properly,
the additional condition of detailed balance is su�cient, that is,

pA T (A→ B)A(A→ B) = pB T (B → A)A(B → A) ∀A,B

where T (A→ B) is the probability to propose moving from A to B and A(A→ B) is the probability to
accept a move from A to B, and accordingly for B → A. The probabilities pA and pB have to satisfy

pA
pB

=
1
Z e
−βEA

1
Z e
−βEB

= e−β∆E where ∆E = EA�EB

in order to sample the Boltzman distribution. From this latter condition, constraints on the algorithms
can be derived.

2 The Metropolis algorithm

The single-spin �ip Metropolis algorithm randomly chooses a spin from an L×L lattice and determines
the energy di�erence to the state where this spin is �ipped. In order to get detailed balance, the probabilty
of accepting the new con�guration is set to

A(A→ B) = Min
{

1 , e+β(EA�EB)
}
.

This procedure is repeated for a predetermined number of time steps, where it is convenient to count the
time t in time steps per lattice site. To avoid treating the boundaries of the lattice di�erently, periodic
boundary conditions are imposed. For all simulations in this section, a 40× 40 lattice was used.
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2.1 Thermalization process

One may choose from two initial states of the lattice, either equally distributed spins corresponding to
an inverse temperature of β = 0 or all spins aligned in the same direction corresponding to β =∞. It is
�rst determined how long the algorithm takes to reach an equilibrium at a given inverse temperatureβ,
starting from these initial states.
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Figure 1: Thermalization processes of m and E outside the critical region.

Figure 1 shows the thermalization process of the magnetization m and the energy E for β = 0.3 and
β = 0.5, respectively, constituting the borders of the interval we are interested in. Such measurements
were performed for di�erent values of β in this interval. Since measurements with di�erent initial states
stabilize at the same values, one can conclude that indeed an equilibrium is reached. Furthermore, it is
apparent that the thermalization time increases with β and that an equilibrium is reached much faster
when starting from a polarized state.
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Figure 2: Thermalization process at βc. The scale on the x-axis is 10 times longer than in Figure 1.

In the �critical region� close to the theoretical value of the critical inverse temperatur, βC ≈ 0.441, the
situation changes drastically as shown in Figure 2. In particular, the magnetization �uctuates heavily
and it is not easy to determine when an equilibrium is reached. This phenomenon is known as �critical
�uctuations�. It is pointed out that the time axis in Figure 2 is twenty times longer than in Figure 1.
As the further measurements have to be performed on equilibrated data, the results of this section are
carefully taken into account in the next sections.
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2.2 Autocorrelation functions

A typical feature of Monte-Carlo methods is that a large number of samples is necessary to obtain accurate
results. The correlations between samples should be as small as possible. Therefore, the autocorrelation
time has to be calculated before performing any further measurements. When dealing with discrete
measurements over a bounded time interval, the exact autocorrelation function cannot be determined.
For a discrete variable Xk containing N measurements labeled by k = 0 · · ·N − 1, the following discrete
version is used instead

c(k) =
1

N − k

N−k−1∑
i=0

Xi+k

(
Xi −

1

N − k

N−k−1∑
i=0

Xj

)

where the measurements have to be equally spaced in time, such that t = k∆t. These functions were
determined for the energy E and the absolute value of the magnetization |m| at di�erent values of the
inverse temperature β = 0.3 . . . 0.5 in steps of 0.01.
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Figure 3: Left: Some autocorrelation functions for E for di�erent values of β. For each curve an average
was taken over 10 measurements, each consisting of 2 · 104 samples taken after equilibration. Right:
Autocorrelation times for E and m as a function of β.

The left graph in Figure 3 shows several measurements of the autocorrelation function for the energy
normalized to cE(0) = 1 on a logarithmic scale. In the range below 1/e3 not depicted here, the data
gets more and more noisy. Analogous curves were found corresponding to m. Since the data behaves
approximately linear at least within a certain range, the autocorrelation may be approximated through
c(t)
c(0) ≈ e

− t
τ . The autocorrelation time τ (in steps per lattice site) is then found from the inverse function

of the autocorrelation function via

(n− 1)τ = c−1(e−n)− c−1(e−1).

The result is shown in the right graph in Figure 3. The autocorrelation times reach a maximal value
around βc (�critical slowing down�) and rapidly decrease outside that area. The values obtained for the
two functions are within the same order of magnitude. In order to obtain proper results, all further
measurements maintain a period of at least 3τ between two consecutive samples taken.

An interesting theoretical property of the autocorrelation time gives a reason for the limitations of the
Metropolis algorithm when it comes to larger lattices. It can be shown that τ ∝ Lz in the critical region,
where z ≈ 2.2 is the dynamic exponent for this algorithm. Since the number of single Monte-Carlo steps
forming one step per site is L2, the computation time can be estimated to scale at least with L4, so that
computations slow down signi�cantly for larger L.
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2.3 Magnetization and magnetic susceptibility

Armed with the results of the previous sections, the measurements for the absolute value of the magneti-
zation |m| and the susceptibility χ are performed. Starting from a fully polarized state, β is successively
lowered from 0.5 to 0.3, where the step size is 0.01 outside the critical region and 0.005 inside. For every
value of β, 104 samples are taken after equilibration. The samples are separated by at least 3τ .
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Figure 4: Magnetization |m| per site and susceptibility χ as a function of β for L = 40, computed with
the Metropolis algorithm. Each point corresponds to 104 samples.

The computation lasted several hours, and the results are shown in Figure 4. Clearly, signs of a
phase transition can be seen, since the magnetization increases rapidly in a region around βC ≈ 0.441.
However, a �nite-size system is considered here and the behaviour indeed di�ers from what the theory
predicts for the thermodynamic limit. The magnetization does not drop to zero for β < βC , and the
susceptibilty only reaches a maximum, but does not diverge. The location of this maximum cannot
simply be associated with βC , what will become apparent in the next chapter.

3 The Wol� algorithm

The Metropolis algorithm considered in the previous chapter is easy to implement, but also quite slow.
In particular, it can take considerable time at low temperatures until a cluster of spins directed opposite
to the prevailing direction is �ipped. This is because the Metropolis algorithm acts locally and does not
know about these clusters.

A faster alternative are cluster �ipping algorithms, such as the Wol� algorithm considered in this
chapter. Starting from a randomly chosen �seed� of a cluster C, this algorithm looks at all neighboring
links 〈x, y〉 with x ∈ C and y /∈ C. The probability of adding this link to the cluster that is to be �ipped
is set to

Pact =

{
0 if σx 6= σy

1− e−2βJ if σx = σy

in order to obtain detailed balance. The implementation used here is based on a FIFO-bu�er.

3.1 Magnetization and magnetic susceptibility

Using the Wol� algorithm, measurements of the magnetization |m| and the susceptibility χ were per-
formed in the same manner as in Section 2.3, but now for di�erent lattice sizes L ∈ {20, 30, 40, 50, 60, 100}.
In Figure 5, some of these measurements that best illustrate the characteristic changes with L were plot-
ted. Of course, the curves for L = 40 precisely coincide with the ones in Figure 4 as expected.

The graph on the left clearly shows that the progression of |m| becomes more and more similar to
the curve expected for an order parameter of a second order phase transition as L grows. As it can

4



0.30 0.35 0.40 0.45 0.50
0.0

0.5

1.0

m
ag

ne
tiz

at
io

n 
|m

|

Inverse temperature

 L = 20
 L = 40
 L = 100

0.30 0.35 0.40 0.45 0.50

0

10

20

30

40

50

60

70

su
sc

ep
tib

ili
ty

Inverse temperature

 L = 60
 L = 40
 L = 20

Figure 5: Magnetization |m| per site and susceptibility χ as a function of β for some di�erent lattice
sizes, computed with the Wol� algorithm. Now, each point corresponds to 105 samples.

be seen in the graph on the right, the maximum of the susceptibility gets increasingly pronounced and
approaches βC with L becoming larger.

3.2 Data collapse for di�erent lattice sizes

The whole set of data obtained in the previous section can now be evaluated using �nite-size scaling. In
an in�nite-size system, many quantities diverge around the critical point. For example, in theory, the
correlation length ξ and the susceptibility χ diverge like

ξ ∝ |t|−ν and χ ∝ |t|−γ

where ν and γ are the critical exponents, if the reduced temperature t = T−TC
TC

approaches zero. But on
a �nite lattice, χ cannot become larger than L and it can be derived that

χ = L
γ
ν χ̃(L1/νt)

where χ̃ is the scaling function which is independent of L. Thus, by plotting χ̃ = L−γ/νχ as a function
of L1/νt , the curves for di�erent values of L should coincide at least near the critical region for an
appropriate choice of TC , γ and ν.
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Figure 6: The scaling functions χ̃ for six di�erent lattice sizes, with γ = 1.75, ν = 1 and TC = 2.27
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Figure 6 illustrates the results of this analysis. Trying to make the curves overlap simply by visual
judgement, it turns out that the curves match best when choosing γ = 1.75 ± 0.02, ν = 1 ± 0.02 and
TC = 2.27±0.01. These values are in accordance with the theoretical values γ = 7

4 , ν = 1 and TC = 2.269.
Evidently, the maximum of χ̃ is quite close to 1. Hence, the shift of the maximum of the susceptibility
for a lattice with a side length of L can be roughly estimated by

βmax,L ≈ βC
L

L+ 1

where the exact value ν = 1 is used. This again illustrates the shift shown on the right-hand side in
Figure 5.

4 Conclusions

The simulations of the 2-dimensional Ising model with the Metropolis algorithm and the Wol� algorithm
verify that this model shows a second-order phase transition with |m| as order parameter. The Metropolis
algorithm is easier to implement, but the Wol� algorithm is much more e�cient. It allows to increase
the lattice size and to obtain more accurate results at the same time. The method of �nite-size scaling
o�ers an elegant way both to compare data from di�erently sized lattices and to determine the relevant
parameters γ, ν and TC . These turn out to be in line with the analytical solution.

The accuracy of the results could be further improved by using larger lattices and taking more
samples. However, to keep the computation times reasonably short, more elaborate techniques, such as
parallel computing or multi-spin coding, would be necessary.
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