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1 Introduction

As it is known since more than 150 years, the dynamics of �uids (i.e., liquids and gases) are described
by the Navier-Stokes equations. A �uid is called incompressible, if d

dt
%(~x, t) = 0. Given the dynamic

viscosity constant µ, the equations then read

% ·
(
∂~v

∂t
+ (∇ · ~v)~v

)
= −∇p+ µ∆~v + ~f (1)

∇ · ~v = 0,

connecting velocity ~v(~x, t), pressure p(~x, t), density %(~x, t) and the external force density ~f(~x, t). Solutions
to these (nonlinear) equations are known only for a couple of very simple cases, and the question whether
smooth, global solutions exist for smooth initial conditions is a famous open problem.

Unfortunately, using standard numerical methods is also problematic, as computing accurate solutions
requires far too much computational e�ort and smooth behaviour of these solutions cannot be guaranteed
for times larger than a characteristic blow-up time. Another approach that circumvents this problems is
to model the �uid �ow microscopically on a lattice, using cellular automata. In 1986, Frisch, Hasslacher
and Pomeau [1] succeeded to show that a certain class of these lattice �uids (called FHP models after
their inventors) indeed returns eq.(1) in the hydrodynamic limit.

In the following, a simple realization of the FHP model is used to simulate a wind tunnel and to
compare the dynamic properties of three di�erent wing pro�les shown in Figure 1. The implementation
was done in C under Scienti�c Linux, OriginPro and MATLAB were used for evaluating and plotting
the data.
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Figure 1: The three di�erent pro�les under comparison, each consisting of 200 coordinates (designed by
Helmut Quadbeck for model gliders, www.hq-modell�ug.de/koordinatenframe.htm).
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2 General setup

The wind tunnel is represented by a hexagonal grid which is 800 points wide and 200 double layers
high, as shown in Figure 2. In horizontal direction, periodic boundary conditions are imposed. Top and
bottom are formed by re�ecting surfaces, just as the 15 lamellas on the left side that stabilize the �ow.
The wing input data is rotated clockwise by the so-called angle of attack α and projected in an area of
width 200. The wing points simply bounce back incoming particles instead of re�ecting them, since this
technique gives unique states also for curved surfaces and prevents two particles being on the same site
and moving parallelly.

Figure 2: The wind tunnel

The grid is initialized with one particle per site (having arbitrary velocity direction), such that the
macroscopic density is % = 1

6 . In the small area to the left of the lamellas, leftward moving particles
are converted into rightward moving ones with a certain probability to create a horizontal �ow. The
horizontal velocity is de�ned by adding up all horizontal velocity components and then dividing by the
number of particles (not sites). The maximal reachable value for an empty tunnel containing no wing
is close to 0.56, but, incorporating the wing, this value decreases and is dependent on α, as the wing
represents an additional �uid resistance.

One has to make sure that the �ow is stable before starting a measurement. It turns out that
the horizontal velocity stabilizes after 105 steps in this setup, and so do the other measurands. All
measurements taken in the following are then averaged over a period of another 105 steps.

3 Lift and drag forces

The forces acting on the wing can be evaluated easily by discretizing the fundamental relation

d

dt
~p = ~F → ∆~p

∆t
= ~F .

The total momentum transfer ∆~p is obtained by adding up all collisions of particles with the wing during
the time interval ∆t, which is simply taken to be the number of steps, ∆t = 105 . Here, one has to be

aware of the fact that twice the momentum is transferred, and an additional factor of
√
3
2 comes into

play in the vertical direction due to the grid geometry.
Firstly, the dependence of lift and drag forces on the horizontal velocity is investigated for all pro�les,

while α = 20◦ is kept �xed. The results are shown in Figure 3. Obviously, pro�le 3 produces less lift
than the other two pro�les, which is due to the fact that pro�le 3 is totally symmetric, as can be seen
also from Figure 1. Indeed, it is a design for horizontal and vertical stabilizers, whereas pro�le 1 and
pro�le 2 are intended as main wings.

Furthermore, it can be seen that pro�le 1 causes the smallest drag force as one would expect, since
it is thinner than the other two pro�les (that have the same percentaged maximum thickness).
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Figure 3: Lift and drag forces for di�erent horizontal velocities, at α = 20◦.

Next, the fan strength is kept �xed, while the angle of attack α is varied. The results are shown
in Figure 4. The lift forces reach a maximum and a minimum for a speci�c α close to ±40◦, and it is
notable that the curve of pro�le 3 is perfectly symmetric as it should be. Astonishingly, the pro�les 1
and 2 produce nearly no lift at α = 0◦, which suggest that their coordinates are given in this way. At
least, their front (leading) edges and rear (trailing) edges lie both at y = 0 (see Figure 1), and the overall
curvature of these pro�les is not very strong.

The drag forces increase with |α|, since the area perpendicular to the wind direction gets bigger, too.
This also explains why the thinner pro�le 1 produces less drag only at small angles, whereas the pro�les
2 and 3 (having the same thickness) are behaving nearly identically except for extreme angles.
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Figure 4: Lift and drag forces varying with α. The horizontal velocity is 0.45 for α = 0◦.

4 Polar diagrams

As mentioned before, the horizontal velocity depends on the angle of attack α because of the varying air
resistance and is thus not constant during the measurements shown in Figure 4. Therefore, lift and drag
coe�cients cL and cD are usually used in aerotechnics, rescaling the forces with the stagnation pressure
1
2%v

2 resulting from the Bernoulli equation, i.e.

cL =
FL

1
2%v

2c
and cD =

FD
1
2%v

2c
,
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where c is the chord length of the wing, and v is the air speed. These coe�cients are then plotted in a
so-called polar diagram as shown in Figure 5. Again, the curve of pro�le 3 is perfectly symmetric!
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Figure 5: Polar diagrams. The dashed line indicates the best gliding angle γ for pro�le 1.

In particular, one can immediately read o� the best gliding angle γ from these diagrams, that is, the
smallest possible angle between the horizontal direction and the wing's trajectory, such that the wing
reaches the largest distance for a given loss of height: one has to construct the upper tangents on these
curves running through the origin. In the tangent point,

cD
cL

=
FD

FL
= tan γ

is obviously minimal. In this regard, pro�le 1 is superior to the other two pro�les as it allows the
steepest tangent, compare Figure 5. Many other �ndings can be derived from the curves in Figure 5,
but a detailed discussion would go beyond the scope of this report.

5 Streamlines and turbulence

Streamline patterns are obtained by forming sections of grid points and averaging the velocities (divided
by the number of particles) in each section, as shown in Figures 6 and 7.

Figure 6: Streamlines for pro�le 3, at α = 0◦
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Smaller arrows mean that the velocities in this segment add partially up to zero, and thus indicate
turbulence phenomena. There is only little turbulence for the symmetric pro�le 3 in neutral position,
but substantial turbulence behind pro�le 2 and above its rear end for α = 20◦. However, the method
used here is too coarse to investigate the interesting phenomenon of �ow separation in greater detail,
since one cannot resolve the boundary layer between the wing and the �ow properly.

Figure 7: Streamlines for pro�le 2, at α = 20◦

6 Conclusions

A wind tunnel simulation using LGCA describes the basic phenomena of lift and drag correctly. Di�erent
properties of the airfoils under investigation, such as thickness or symmetry, lead to di�erent results
that appear to be coherent, at least in a qualitative way. For a more precise treatment of turbulence
phenomena, a considerably higher resolution at the boundary layer is needed. This could be achieved
by means of a grid with variable spacing in order to keep the computational e�ort reasonable, but in
turn, the implementation would become much more involved. Eventually, for a wing with �nite span,
3dimensional e�ects would have to be taken into account.

References

[1] U. Frisch, B. Hasslacher, Y. Pomeau: Lattice-Gas Automata for the Navier-Stokes Equation. Physical
Review Letters. 56, 1986, S. 1505�1508

[2] E. Götsch. Luftfahrzeugtechnik, Motorbuchverlag, Stuttgart 2003

[3] H. Schlichting, E. Truckenbrodt. Aerodynamik des Flugzeuges, Bd. 1, Springer, Berlin 2001

5


