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Abstract

Our aim is to give a compact and consistent overview of the steps leading to the discovery
of the first infinite dimensional completely integrable Hamiltonian system. We construct
the Lax pair for the Korteweg-de Vries equation and obtain the KdV-hierarchy using two
different approaches. The Inverse Scattering Transform as a method for solving the KdV-
equation is introduced, and N -soliton solutions for this equation are discussed qualitatively.
By constructing an infinite series of first integrals, the Hamiltonian structure of the KdV-
hierarchy is revealed.

1 Introduction

In 1844, the Scottish naval engineer John Scott Russell firstly described solitary waves [1], i.e
waves which travel long distances without changing their shape. After becoming aware of these
waves during experiments on ship construction, he started to investigate this phenomenon in
water tanks. An appropriate theoretical explanation was found no less than fifty years later by
Korteweg and de Vries [2], who formulated their famous equation1

ut = 6uux − uxxx. (1)

There was no noteworthy research in this area for a long time, until Fermi, Pasta and Ulam firstly
did numerical simulations on vibrating strings containing nonlinear terms in 1954. Surprisingly,
they found a quasi-periodic behaviour in many cases instead of the chaotic one they actually
expected [3]. When Kruskal and Zabusky found links between these results and the KdV-
solitons in new numerical simulations eleven years later [4], the interest in equation (1) was
suddenly revived.

We review some of the pioneering discoveries triggered by this observation. The discovery of
a whole hierarchy of nonlinear PDEs called the KdV-hierarchy, the Inverse Scattering Transform
(IST) as a method for solving equation (1) and the solution for N -solitons in closed form are
among these. The Hamiltonian interpretation of the KdV-hierarchy is discussed. Ultimately,
we sketch the proof that this is indeed a completly integrable system which became one of the
pillars on the way to the modern theory of classical integrable systems.

1There are many different conventions about signs and numerical factors for this equation, resulting from
scaling. In the following, we will persistently use the version stated above.
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2 Steps towards the KdV hierarchy

Two remarkable discoveries. When a team around Gardner [5] searched for a solution
to eq. (1) in 1967, they found the following interesting approach inspired by the Cole-Hopf-
transformation for Burger’s equation: By solving the eigenvalue equation for the Schrödinger
operator2 (

∂2 − u(x, t)
)

Ψ(x, t) = −λ(t)Ψ(x, t)

for u and substituting this in eq. (1), one obtains

λtΨ
2 + ∂

(
ΨQx −ΨxQ

)
= 0, (2)

where Q ≡ Ψt + Ψxxx− 3(u− λ)Ψx. Since u(x, t) depends on time, Ψ and λ are parametrically
time-dependent, too. Assuming that Ψ→ 0 for |x| → ∞, integration over (−∞,+∞) yields

λt

∫ +∞

−∞
Ψ2dx = 0 ⇒ λ = const.

Consequently, the spectrum of the Schrödinger operator is at least partially preserved in time
if u evolutes according to eq. (1). This discovery led to the invention of the Inverse Scattering
Transform which will be considered in Section 3.

One year later, Lax [7] formulated his famous equation describing isospectral evolution,
which is derived as follows: Consider a PDE which is nonlinear in ∂

∂x ≡ ∂, but first order in ∂
∂t

of the form
ut = K[u]. (3)

If we can associate to each u a selfadjoint and therefore diagonalizable operator Lu such that
L(t) remains unitarily equivalent,

d

dt
(U(t)−1 L(t)U(t)) = −U−1U̇U−1LU + U−1L̇U + U−1LU̇ = 0,

then the eigenvalues of L are constants of motion. Since the one-parameter group U(t) satisfies
d
dtU(t) = M U(t) with M being antisymmetric, one gets

d

dt
L ≡ L̇ = [M,L]. (4)

This is the Lax equation which has to be equivalent to the original equation (3). The advantage
of this method is that the whole spectrum of L is preserved!

Lax pair of the KdV equation and generalizations. Clearly, we are interested in the
Lax pair of eq. (1). The partly isospectral behaviour of the Schrödinger operator strongly
suggests to set L = ∂2 − u(x, t). Since then L̇ acts like −ut, we are left with finding a suitable,
antisymmetric operator M which satisfies

[∂2 − u , M ] = 6uux − uxxx

in order to recast eq. (1) from eq. (4). The simplest candidate for M is the differential operator
∂ itself, which is antisymmetric with respect to the L2-inner product, ∂∗ = −∂. This yields a
chiral wave equation

[∂2 − u, ∂] = ux ⇒ ux = ut.

2Since the symbol D is used for the Hirota-D-operator in the theory of integrable systems, we denote the
differential operator with respect to x by ∂ in the following, using the same notation as [6].
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This is not the equation we desire, however, this is in fact the zeroth order of the KdV-hierarchy.
As we will come back to this equation later on, we set M0 = −4∂ and ux = −1

4K0[u]. Trying a
general third-order differential operator ∂3 + b(x)∂ + ∂b(x) instead, we get

[∂2 − u , ∂3 + b∂ + ∂b] = uxxx + bxxx + 2bux + (4bx + 3ux)(∂2 + ∂).

As the KdV-equation is of order zero in ∂, the factor in front of the rightmost bracket has to
vanish; thus we set b = −3

4u which yields

[∂2 − u , ∂3 − 3

4
(u∂ + ∂u)] =

1

4
uxxx −

6

4
uux = −1

4
K1[u].

We found the right result up to a factor and therefore, the Lax pair for the KdV equation is
given by

L = ∂2 − u and M1 = −4∂3 + 3(u∂ + ∂u). (5)

This principle can clearly be generalized and results in an infinite series of nonlinear PDEs, the
KdV-hierarchy. Using antisymmetric operators

Mn = −4
(
∂ +

n∑
i=1

(bi∂
2i−1 + ∂2i−1bi)

)
of arbitrary order n and requiring that [∂2 − u , Mn] is of order zero in ∂ in order to fix the bi,
we can write the KdVn equation

[∂2 − u , Mn] = Kn[u] = ut. (6)

As an example, we provide the Lax matrix M2 and KdV2:

M2 = −4∂5 + 5(u∂3 + ∂3u)− 5

4
(uxx∂ + ∂uxx)− 15

4
(u2∂ + ∂u2)

4ut = −30uxu
2 + 20uxxux + 10uxxxu− uxxxxx

In this case, however, two unknown functions b1 and b2 have to meet four equations already.
Like in the case when n = 1, there are two linearly dependent equations. But the third equation
turns out to be the derivative of the fourth. Consequently, it is far from obvious whether the
number of unknown functions bi matches with the number of constraints in general.

Representation by pseudo-differential operators. A way to describe the KdV-hierarchy
using fractional powers of the Schrödinger operator was found in 1976 by Gelfand and Dikii
[8]. A more recent description of this method is given in [6]. First, extend the usual differential
operator ∂ obtaining the Leibnitz rule [∂, f ] = (∂f) ≡ fx by defining an ”integration” symbol
∂−1 such that

∂−1∂ = ∂∂−1 = 1, where ∂−1f =
∞∑
i=0

(−1)i(∂if) ∂−i−1.

The relation on the right-hand side is motivated by integration by parts and can be generalized
for ∂−k. This allows us to shuffle all the ∂−k to the right in concatenations. A general pseudo-
differential operator A =

∑N
i=−∞ ai(x)∂i can be split into two parts, A = (A)+ + (A)−, where

(A)+ =

N∑
i=0

ai(x)∂i and (A)− =

−1∑
i=−∞

ai(x)∂i.
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With these tools, we can compute L
1
2 by formally writing Q2 = L ≡ ∂2 − u and making a

general ansatz Q = ∂ +
∑∞

i=0 q−i∂
−i. Next, Q2 is calculated explicitely by multiplying the sum

by itself and then pushing all (pseudo-)differentials to the right. Since (L)− = 0, all coefficents
of the negative powers of ∂ have to vanish in this expression, and one can determine the q−i by
recursion:

Q = ∂ − 1

2
u∂−1 +

1

4
ux∂

−2 − 1

8
(uxx + u2)∂−3 +

1

16
[uxx + 3u2]x∂

−4 + · · ·

This enables us now to calculate L
n
2 . Surprisingly, it turns out that

(L
1
2 )+ = (Q)+ = ∂ =− 1

4
M0

(L
3
2 )+ = (QL)+ = ∂3 − 3

4
(u∂ + ∂u) =− 1

4
M1

(L
5
2 )+ = (QL2)+ = ∂5 − 5

4
(u∂3 + ∂3u) +

5

16
(uxx∂ + ∂uxx) +

15

16
(u2∂ + ∂u2) =− 1

4
M2

hold. More generally, it can be shown that the KdVn equation for n ∈ N0 is given by

L̇ = [L , 4(L
2n+1

2 )+ ] ≡ −Kn[u]. (7)

A proof can be found in [6]. Note that for integer powers of L, Ln = (Ln)+ holds, and therefore
the equations become trivial.

3 Inverse scattering method and soliton solutions

Time-independent scattering. In 1968, Gardner, Greene, Kruskal and Miura [5] developed
IST as a revolutionary method to solve eq. (1). In order to get an insight to this method, a
static scattering problem with u being the potential is considered firstly, where the eigenvalue
equation for the Schrödinger operator reads

LΨ(x) ≡
(
∂2 − u(x)

)
Ψ(x) = −λΨ(x).

The spectrum of L is twofold, with a continuous part for λ > 0 and a finite number of discrete
negative eigenvalues λn corresponding to bound states. Assuming that u vanishes for large
values of |x|, or, more formal,

∫∞
−∞(1 + |x|)|u(x)|dx <∞, this reduces to

∂2Ψ(x) ≈ −λ

for large |x|. This makes it possible to easily determine the asymptotic behaviour of the eigen-
functions Ψ(x, k) and Ψn(x) as illustrated in Figure 1. The scattering data s characterizes the
asymptotic behavior of the eigenfunctions and consists of the transmission coefficent a(k), the
reflection coefficient b(k), the discrete eigenvalues κn and the normalization coefficients cn for
the Ψn. We choose the normalization such that

∫
Ψ2
n dx = 1 and |a|2 + |b|2 = 1.

It is more than a notable fact that there is a bijective mapping u(x) → s of potentials u
into the scattering data s = (b(k), κn, cn). In particular, one can compute u from s by solving
for K(x, y) in the Gelfand-Levitan integral equation (see for example [9])

K(x, y) +B(x+ y) +

∫ +∞

x
K(x, s)B(y + s) ds = 0, (8)

where B(ξ) =
1

2π

∫ +∞

−∞
b(k)eikξ dk +

∞∑
n=0

c2ne
−κnξ.
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x

λ = k2

u(x)

λn = −κ2n

Ψ(x, k) ≈ e−ikx + b(k)eikx

Ψn(x) ≈ cne−κnx

Ψ(x, k) ≈ a(k)e−ikx

Ψn(x) ≈ cne+κnx

Figure 1: The time-independent scattering problem. The small graphs show the asymptotic
behaviour of the eigenfunctions Ψn(x) and Ψ(x, k) in the corresponding regions. For λ < 0,
only exponentially decaying solutions are feasible in order to be normalizable. For λ > 0,
we consider an incoming wave from the right whose amplitude is set to 1.

The kernel B contains the scattering data s. In the derivation of this equation, the kernel
K(x, y) = 1

2π

∫ +∞
−∞ Ψk(x)e−iky dk − δ(x − y) for y ≥ x originates from Fourier transforming Ψ

and therefore obeys the wave equation Kxx(x, y) = Kyy(x, y). Then, the potential is given by

u(x) = −2
d

dx
K(x, x).

Inverse scattering transform. However, our aim is to solve eq. (1) and in this case, the
potential u(x, t) is time-dependent, and so is the scattering data except for κn =

√
−λn

s = (b(k, t), κn, cn(t)).

As discussed more in detail in [5], it turns out that the time evolution of s can be obtained from
eq. (2). Using the fact that λt = 0, this equation can be integrated yielding

Ψt + Ψxxx − 3(u− λ)Ψx = C(t)Ψ +D(t)Ψ

∫ x

−∞

dx

Ψ2
.

Here, C(t) and D(t) are integration constants, and the rightmost term represents the second,
linearly independent solution to eq. (2) caused by the twofold spectrum. Inserting the expres-
sions for Ψn(x) and Ψ(x, k) into this equation, where both cases have to be treated separately,
and using the normalization conditions, one finally obtains:

cn(t) = cn(0)e4κ
3
nt b(k, t) = b(k, 0)e8ik

3t a(k, t) = a(k, 0)

Note in particular that a and |b| do not evolute in time.
Now the different parts introduced in this section can be put together, enabling us to solve

the initial-value problem ut = 6uux − uxxx with u(x, 0) = u0(x) for t > 0 by the Inverse
Scattering Transform: First, the scattering data s is obtained from the initial data u0(x) by
solving the direct scattering problem. By analyzing how s evolutes in time, we retrieve time-
dependent scattering data. Finally, u(x, t) can be computed from the solution of eq. (8), where
both the Gelfand-Levitan equation and its solution are now parametrically time-dependent.
The procedure is illustrated in Figure 2. In particular, there exists a unique solution for every
u0(x) vanishing sufficiently fast for |x| → ∞. Nevertheless, it is noted that one can easily guess
a solution of eq. (1) which does not meet the boundary conditions, for instance u(x, t) = −x/6t.
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solution for t > 0
u(x, t) = −2 d

dxK(x, x)
time-dependent
scattering data

original problem
initial values u0(x)

scattering data
s = (b(k, 0), κn, cn(0))

solve

GL-equation

apply direct

scattering

analyze time
evolution of s

Figure 2: Schematic illustration of the inverse scattering transform

Soliton solutions. An explicit solution describing the interactions of N solitons was found
independently by Hirota in 1971 [10]. However, the same solution can of course also be derived
through the IST, see for example [9]. This solution corresponds to a reflectionless potential in
the Schrödinger equation, i.e., b(k, t) ≡ 0 and is given by

u(x, t) = −2
∂2

∂x2
ln det |M(x, t)|,

where Mij(x, t) = δij +
2
√
κiκj

κi + κj
eξi+ξj and ξi = κix− 4κ3i t− ln ci(0).

The dimension of the quadratic matrix M corresponds to the number N of solitons involved.
The κn determine speed and amplitude, the cn(0) the initial position and they have to be
mutually different. For N = 1, we find the well-known solution [11]

u1(x, t) = −2κ2sech2(κx− 4κ3t− ln c(0)).

Examples for two and three solitons are depicted in Figure 3, illustrating some basic properties.
The speed of a soliton is higher, the larger its amplitude. The solitons do not simply pass
through each other, but show nonlinear interaction processes. This interaction corresponds to
a phase shift for t→ ±∞.

4 Conserved quantities and Hamiltonian structures

First Integrals. A simple way to make the Hamiltonian structure of the KdV-equation per-
ceivable is to construct an infinite series of so-called first integrals, following [12]. A one-
dimensional local conservation law between a density T and a flux X takes the form

Tt[u]−Xx[u] = 0. (9)

This conservation law is called local, since T and X are not3 explicitly dependent on x and t.
In our case, they will turn out to be polynomials in u and its derivatives. Then one can define
the time-independent first integrals I(n) arising from these laws as

I(n) =

∫ +∞

−∞
T (n)[u] dx where

d

dt
I(n) = X(n)

∣∣∣+∞
−∞

= 0,

3In physics, the term “local” is frequently used in the opposite sense. However, here it is used as defined by
Gardner in [12].
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(a) Interaction of two solitons

(b) Phase shift (c) Interaction of three solitons

Figure 3: N soliton solutions according to the Hirota solution, visualized using Maple c© 14.
Note that −u(x, t) is plotted here for selected values of t. Part (a) shows nonlinear inter-
action between two solitons. Part (b) depicts the same two solitons, and additionally a
single soliton (in green) with the same initial data as one of them. Clearly, the interaction
results in a phase shift. Part (c) illustrates a three soliton solution.

using eq. (9) and still assuming that u→ 0 for |x| → ∞. For example, the KdV1-equation itself
can be written as a conservation law, enabling us to read off the associated density and first
integral

ut − (3u2 − uxx)x = 0 ⇒ I(1) =

∫
u dx.

It should be noted that not every constant of motion has an associated conservation law. As a
next step, we apply the following useful transformation found by Miura [13]

u = w + εwx + ε2w2 (10)

on the KdV equation which yields

(1 + ε∂ + 2ε2w)
(
wt −

[
3w2 + 2ε2w3 − wxx

]
x

)
= 0.

The expression on the left-hand side is an operator and therefore cannot vanish, but the ex-
pression on the right-hand side is clearly a conservation law. This tells us that

∫
w dx is a first

integral! Eq. (10) is an equation of the Ricatti type which can be solved by plugging in a formal
power series ansatz w =

∑∞
n=0wnε

n and equating powers of ε. We get a recursion relation

−wn = w
′
n−1 +

n−2∑
p=0

wn−pwp, w0 = u, w1 = −u′ ,

which enables us to express w by u and its derivatives. On integration, all perfect derivatives
vanish, and one finally obtains∫

w dx =

∫
u dx︸ ︷︷ ︸
I(1)

−ε2
∫
u2 dx︸ ︷︷ ︸
I(2)

+ε4
∫

2u3 + u2x dx︸ ︷︷ ︸
I(3)

+ · · · (11)

Since ε can be chosen arbitrarily, each term in eq. (11) constitutes a first integral.
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KdV as a completely integrable system. Looking closer at I(3) in eq. (11), one sees that

∂
(δI(3)[u]

δu

)
= 2(6uux − uxxx) = 2K1[u].

Similar relations exist between all K[u]n and the I(n)[u] which was realized by Gardner as
acknowledged in a footnote by Lax [7]. Defining the skew symmetric operator J := ∂ and
setting H = 1

2I
(3), we retrieve

ut = J δH[u]

δu
. (12)

Thus, we can rewrite the KdV-equation as Hamiltonian equation of motion, where u takes over
the role of the generalized coordinates labeled by x! An infinite-dimensional Poisson bracket
can be obtained applying the chain rule to a functional F [u] which is not explicitly dependent
on t. Here, 〈·, ·〉 denotes the L2-inner product with respect to x

dF

dt
=

〈
δF

δu
,
du

dt

〉
=

〈
δF

δu
,J δH

δu

〉
=: {F,H} .

Finally, in 1971, Zakharov and Faddeev succeeded in showing that the IST is indeed a
canonical transformation to action-angle variables [14]. As the proof is quite extensive, we only
sketch the main steps here:

1. Establish a “symplectic form” ω in the generalized coordinates u(x)

ω =

∫ +∞

−∞

∫ x

−∞
δ1u(x)δ2u(y)− δ2u(x)δ1u(y) dy dx.

2. Express it in new coordinates which depend merely on the scattering data

ω =

∫ +∞

−∞
δ1P (k)δ2Q(k)− δ2P (k)δ1Q(k) dk +

m∑
l=1

(δ1P̃lδ2Q̃l − δ1Q̃lδ2P̃l),

where P (k), P̃ (κn) are constants of motion, i.e. functions of |b(k)| and κn only.

3. Show that the Hamiltonian H = I(3) is a function of the impulses P (k) only.

This can be considered as a generalization of Liouville integrability with functional analysis
means and clearly shows that the KdV hierarchy is an infinite-dimensional completely integrable
Hamiltonian system.

5 Outlook

Once the facts we presented were recognized, many other scientists became interested in this
subject, and an overwhelming flood of publications started. Related series of nonlinear PDEs
like the Generalized KdV-hierarchy and the Kadomtsev-Petviashvili hierarchy were discovered.
By exploring the algebraic and geometric structures behind them, powerful tools like the Adler
trace for pseudo-differential operators were developed. The Inverse Scattering Transform was
transferred to the quantized case, and more recently, a connection to conformal field theory was
found.

We can conclude that the discovery of the KdV-hierarchy was a groundbreaking step to-
wards the modern theory of classical integrable systems. Moreover, without any doubt, it also
influenced many other comtemporary areas of research both in mathematics and theoretical
physics.
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